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Abstract

The paper reports the performance of balanced two-stream parallel flow heat exchangers, in which each stream flows as a tree network
through its allotted space. The two trees are in parallel flow, and are arranged like two palms pressed against each other. The relation-
ships between effectiveness and number of heat transfer units are developed for several parallel tree flow configurations: (i) constructal
dichotomous trees covering uniformly a rectangular area, (ii) trees on a disk-shaped area, and (iii) trees on a square-shaped area. In con-
figurations (ii) and (iii) each stream flows between the center and the periphery of the area. Configurations (i) and (ii) are trees with min-
imal resistance to fluid flow. Configuration (iii) is designed by minimizing the length of each duct in the network. The performance of the
parallel flow configurations is compared with the performance of counterflow configurations. The future use of dendritic heat exchangers
in devices with maximal heat transport density is proposed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction: nonuniform multi-scale flow structures

Constructal theory recommends the use of hierarchical
tree-shaped (dendritic) paths for the judicious distribution
of fluid streams over volumes. Constructal tree-shaped flow
architectures were first reported for traffic and for optimiz-
ing the insertion of high-conductivity blades and needles
into heat-generating packages of electronics [1]. Trees for
convection were developed in Refs. [2–5]. To maximize
the global performance of the macroscopic flow system
means that every volume element must be shaped and sized
to function at the same (highest) level of performance as
any other volume element. The flow structures that emerge
along this design route are tree-shaped, with multiple scales
that are arranged hierarchically and distributed non-
uniformly. Such structures achieve maximal density of
transport, or maximal compactness.
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Bejan [2] proposed to use dendritic flow architecture in
the conceptual design of two-stream heat exchangers. This
is a new direction for the development of the heat exchan-
ger architecture. Current heat exchanger design methods
call for the use of uniform (one scale) flow structures, for
example, banks of parallel tubes in human-scale heat
exchangers, or arrays of parallel microchannels for elec-
tronics cooling [6]. One tube is designed to perform in
the same manner as its neighbor. Uniform architectures
are at work in many other applications, e.g., nuclear reac-
tor cores, packed beds, volumetrically cooled electric wind-
ings, and packages of electronics.

Geometric features (e.g., coalescence) generated by the
search for less resistance endow the larger flow system with
organization, structure, geometry, or topology. What is
perceived as bad (‘‘mal’’ distribution) because of the rigid
assumption of flow uniformity, is in fact good from the
point of view of minimizing all the internal flow resistances
together. This is achieved by balancing the streams against
each other in such a way that the global resistance of the
microscopic and highly complex system is minimum. The
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Nomenclature

A area (m2)
cp specific heat (J kg�1 K�1)
D channel diameter (m)
h heat transfer coefficient (W m�2 K�1)
k thermal conductivity (W m�1 K�1)
L length (m)
_m mass flow rate (kg s�1)
M dimensionless mass flow rate, M ¼

_mcp=ðpkNuA1=2Þ
n number of pairing levels
nn number of central ducts
N number of heat transfer units
Nu Nusselt number, Nu = hiDi/k
DP pressure drop (Pa)
q heat flow (W)
R radius (m)
Rt thermal resistance (K W�1)eRt dimensionless thermal resistance, eRt ¼

pkNuA1=2Rt

DT temperature difference (K)
U overall heat transfer coefficient (W m�2 K�1)
V volume (m3)
_W pumping power (W), _W ¼ _mDP=qeW dimensionless pumping power, eW ¼ _W V 2=

½ðkNu=cpÞ2ðm=qÞA5=2�

Greek symbols

e effectiveness
g dimensionless longitudinal coordinate
m kinematic viscosity (m2 s�1)
n dimensionless longitudinal position
q density (kg m�3)

Subscripts

0 elemental
c counterflow
cold cold stream
hot hot stream
i channel rank or internal
in inlet
m mean
n number of construction levels
out outlet
p parallel flow
x streamwise coordinate

Superscript

i ith construct

Fig. 1. Parallel flow of tree-shaped streams distributed over a square area.
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emerging flow structure is tree-shaped (multi-scale, nonuni-
form), not parallel and uniform. The work of da Silva et al.
[7] demonstrated the performance of balanced two-stream
counterflow heat exchangers, in which each stream flows
as a tree network with minimal resistance. The objective
of the present paper is to report the heat transfer perfor-
mance of balanced two-stream parallel flow heat exchang-
ers, for the same tree-shaped flow configurations as those
studied by da Silva et al. [7].

2. Trees on a rectangular area

2.1. Geometry

The flow structure of the heat exchanger is shown in
Fig. 1. This structure was developed based on the construc-
tal method discussed in detail in [7]. The balanced parallel
flow heat exchanger has two identical trees, which mate
perfectly: one tube of the hot tree is parallel to and in excel-
lent thermal contact with the corresponding tube of the
cold tree. In the lower part of Fig. 1, the hot and cold trees
distribute the single streams (mn) over a square area, collect
a large number of mini streams (m0) in manifolds on the
back side, and lead them out as single streams. The mani-
folds are insulated. It is assumed that the same type of sin-
gle-phase fluid flows through the two trees. The mixing of
the streams inside the manifolds is not a source of irrevers-
ibility because the m0 streams arrive at the manifold not
only at the same pressure but also at the same temperature.

One tree is composed of many channels of (n + 1) sizes.
One channel has the length Li and internal diameter Di.
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The number of tubes of type i is ni. In constructal design
the smallest scale is primordial: the construction of the
entire flow architecture starts with the smallest channel
scale (L0,D0), which inhabits the smallest square area
element. Larger constructs are made by pairing smaller
constructs. Dichotomy (pairing or bifurcation) is used here
as an optimization result, not as an assumption. The chan-
nel lengths double after two consecutive construction steps,
and is given approximately by the rule

Liþ1 ffi 21=2Li ði ¼ 0; 1; . . . ; nÞ: ð1Þ
Pairing at every construction level means that the channel
numbers and flow rates are ordered as

ni ¼ 2n�i; _mi ¼ 2i _m0 ði ¼ 0; 1; . . . ; nÞ: ð2Þ

The tree structure bathed by _m ¼ _mn has (n + 1) length
scales, which are organized hierarchically. Beginning with
Murray’s study of blood vessels [8], many studies have
shown that when the volume occupied by all the channels
(V) is fixed, there is an optimal size step (change of diame-
ter) at each pairing node such that DP is minimal,

Diþ1 ¼ 21=3Di ði ¼ 0; 1; . . . ; nÞ: ð3Þ
This optimization result is robust, because it does not de-
pend on the lengths Li, their sizes, and relative positions.

2.2. Fluid flow

Assume that every tube is slender (Li/Di� 1), the flow is
in the Hagen–Poiseuille regime, and the pressure drops are
mainly due to friction along the straight sections of the net-
work. The local pressure drops associated with joining two
tubes together are assumed negligible. In Hagen–Poiseuille
flow the pressure drop along one tube of type i is

DP i ¼
128

p
m _mi

Li

D4
i

: ð4Þ

Because the path between the root of the tree and one point
in the canopy is the same for all the canopy points, and
because the canopy points are all at the same pressure,
the overall pressure difference (root–canopy, or canopy–
root) is

DP ¼
Xn

i¼0

DP i ¼
128

p
m _mn

L0

D4
0

2�nS1; ð5Þ

where the sum S1 ¼
Pn

i¼02i=6 ¼ ð2ðnþ1Þ=6 � 1Þ=ð21=6 � 1Þ is a
function of n. The total tube volume is

V ¼
Xn

i¼0

ni
p
4

D2
i Li ¼

p
4

D2
0L02nS1: ð6Þ

Another global dimension of the design is the total area
covered by the largest construct (the nth construct),

A ¼ 2nð2L0Þ2: ð7Þ
The optimized tree structure depends on three geometric
features: the smallest scales (D0,L0) and the number of
channels (n). Using the constraints (6) and (7), the smallest
scales become

L0 ¼ 2�ðnþ2Þ=2A1=2; D0 ¼ p�1=223=2�n=4V 1=2A�1=4S�1=2
1 ; ð8Þ

such that the architecture is described by A, V, and n. The
dimensionless pumping power required to force _m to flow
through one of the (A,V)-size tree iseW ¼ p32�n=2S3

1M2: ð9Þ
2.3. Heat transfer

The heat transfer performance of two streams in parallel
flow is condensed in the relation between effectiveness and
number of heat transfer units. In this section, this relation
is developed for two trees in parallel flow. The two trees are
aligned perfectly (Fig. 1, bottom). One channel of the hot
tree (Li,Di) is parallel to the corresponding channel of
the cold tree. This parallel flow is balanced locally, because
the capacity rate _micp flows through each of the two tubes.
The stream-to-stream heat transfer in every construct is

qi ¼ U ipDiLiDT m;i: ð10Þ
Assuming that the heat current is impeded primarily by the
internal (convective) thermal resistances of the two laminar
flows, and not by the thermal diffusion through the mate-
rial in which the tube is embedded, the overall heat transfer
coefficient is Ui = hi/2. The heat flow qi is also equal to the
enthalpy decrease experienced by the warm stream, or the
enthalpy increase experienced by the cold stream,

qi ¼ _micpDT i
x: ð11Þ

Dividing Eqs. (11) and (10) we find

DT i
x

DT m;i
¼ pkNu

2cp

Li

_mi
¼ 2ðn�2Þ=2

2M
2�i=2 � N i: ð12Þ

The temperature variation DTx,i along the hot stream of
each i-construct is [9]

DT x;i

DT max;i
¼ 1

2
ð1� e�2NigÞ; g ¼ x

Li
: ð13Þ

For g = 1 this becomes

DT i
x

DT max;i
¼ ð1� e�2NiÞ

2
¼

1� exp � 2ðn�2Þ=2

M 2�i=2
� �h i

2
� ei:

ð14Þ
The local temperature difference between two fluids [9] in
the i-construct is, Fig. 2,

DT iðxÞ
DT max;i

¼ expð�2N ix=LiÞ ¼ expð�2NigÞ: ð15Þ

If the two flow paths are oriented from canopy to root,
then from Eq. (15) we obtain

DT max;i ¼ DT max exp �
Xi�1

k¼0

2Nk

 !
ði ¼ 1; . . . ; nÞ; ð16Þ



Fig. 2. Local temperature variation between two symmetric ducts of tree-
shaped heat exchanger in parallel flow.

Fig. 3. Effect of the complexity on the temperature variation along a tree-
shaped heat exchanger.
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where DTmax = DTmax,0. In view of Eq. (12), we haveXi�1

k¼0

2Nk ¼
2npkNuL0

_mncp

Xi�1

k¼0

2�k=2 ¼ 2ðn�2Þ=2

M
ð1� 2�i=2Þ
ð1� 2�1=2Þ

; ð17Þ

and Eq. (16) becomes

DT max;i ¼ DT max exp � 2ðn�2Þ=2

M
ð1� 2�i=2Þ
ð1� 2�1=2Þ

" #
ði ¼ 1; . . . ; nÞ:

ð18Þ
The enthalpy change experienced by the warm fluid in the
ith pair of channels is

qi¼ _micpDT i
x¼ 2�ðnþ1ÞmncpDT max2i exp �2ðn�2Þ=2

M
ð1�2�i=2Þ
ð1�2�1=2Þ

" #

� 1� exp �2ðn�2Þ=2

M
2�i=2

 !" #
ði¼ 1; . . . ;nÞ; ð19Þ

with

q0 ¼ m0cpDT 0
x ¼ 2�ðnþ1ÞmncpDT max 1� exp � 2ðn�2Þ=2

M

 !" #
ði ¼ 0Þ: ð20Þ

The total heat transfer rate from the hot tree to the cold
tree is

q¼
Xn

i¼0

niqi ¼ mncpDT x

¼ mncpDT max

2
1� exp �2ðn�2Þ=2

M

 !" #(

þ
Xn

i¼0

1� exp �2ðn�2Þ=2

M
2�i=2

 !" #
exp �2ðn�2Þ=2

M
ð1� 2�i=2Þ
1� 2�1=2

" #)
:

ð21Þ
The global (tree) equivalent of Eq. (14), and the global
effectiveness of the parallel tree flow is

DT x

DT max

¼ 2�1 1� exp �2ðn�2Þ=2

M

 !" #(

þ
Xn

i¼1

1� exp �2ðn�2Þ=2

M
2�i=2

 !" #
exp �2ðn�2Þ=2

M
ð1� 2�i=2Þ
1� 2�1=2

" #)
� e:

ð22Þ
An interesting feature of the tree-shaped parallel flow is

the longitudinal variation of DTmax,i, Eq. (18), which can
be presented in the form

DeT M
i ¼

DT max;i

DT max

� �M

¼ exp � 2ðn�2Þ=2ð1� 2�i=2Þ
1� 2�1=2

" #
: ð23Þ

Fig. 3 shows the variation of dimensionless maximum tem-
perature difference at the inlet of each pair, from the tree
root (i = n) to the canopy (i = 0) as a sequence of points
ðDeT M

i ; niÞ for a given number of pairing levels (n) and for
any mass flow rate M. Each point indicated by a circle rep-
resents the junction between channels Li and Li+1, such
that the junction is located at the end of the Li channel that
is closer to the trunk, not the canopy. The longitudinal
position xi along the tree path is measured from the canopy
toward the root,

xi ¼
Xi

i¼0

Li ¼ L0

2ðiþ1Þ=2 � 1

21=2 � 1
: ð24Þ

Because the total flow length is xn = xi (i = n), the dimen-
sionless longitudinal position is

ni ¼
xi

xn
¼ 2iþ1 � 1

2nþ1 � 1
: ð25Þ



Fig. 5. Relative performance of the tree-shaped parallel flow and
counterflow heat exchangers for different complexities.
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The curves plotted in Fig. 3 represent the longitudinal var-
iation of the temperature difference between hot and cold
fluids. There is one curve for each level of tree complexity
n. It is important to note the effect of the complexity n on
the longitudinal variation of the temperature difference
between hot and cold streams. As n increases, the temper-
ature difference gradually decreases towards the trunk. In
the case i = n + 1, Eq. (23) yields

DeT M
nþ1 ¼

DT max;nþ1

DT max

� �M

¼ expð�2ðn�2Þ=2S2Þ; ð26Þ

where S2 ¼
Pn

i¼02�i=2 ¼ ð1�2�ðnþ1Þ=2Þ
1�2�1=2 . This shows the impact

of complexity on the outlet temperature difference for a
specified mass flow rate M.

Fig. 4 shows the variation of the thermal effectiveness ep

versus M for structures with different levels of complexity
n. For small mass flow rates, the heat exchanger effective-
ness is maximal and it does not depend on tree complexity.
As M increases above 10�1, the effectiveness increases with
complexity. In spite of diminishing returns, the increase in
complexity can improve significantly the heat exchanger
performance, if the required pumping power is available.

In Fig. 5, the performance of parallel flow heat exchan-
ger is compared with the performance of counterflow heat
exchanger as the ratio qp/qc = ep/ec versus M and n. The
effectiveness of a counterflow tree-shaped heat exchanger
is [7]

ec ¼
2n=2�2S2

2n=2�2 þM
: ð27Þ

Three distinct regions can be identified: for very small mass
flow rates M < 10�3, the global heat transfer rate of a par-
allel flow heat exchanger is half as larger as for a counter-
flow heat exchanger, and does not depend on complexity.
At sufficiently high mass flow rates, the two heat exchang-
Fig. 4. Thermal performance for the tree-shaped architecture (Fig. 1)
versus the mass flow rate.
ers have the same effectiveness regardless the level of
complexity, however, it is very small. In the intermediate
M range, the higher the complexity of the counterflow heat
exchanger, the greater is its performance. In this range, the
selection of the number of pairing levels (n) should be done
according to the requirements of fixed mass flow rate or
pumping power available.

3. Disk-shaped tree parallel flow

3.1. Geometry and fluid flow

The radial tree flow configuration was optimized numer-
ically for minimal global resistance in [4]. The tree-disk par-
allel flow consists of two trees of the type shown in [4],
which form a sandwich. The tree layout results determinis-
tically from the minimization of the global flow resistance
between the disk centre and its periphery, subject to fixed
disk radius R and fixed total duct volume. The optimal tree
architectures reported in [4] are based on the assumption
that the ducts are slender enough and the Reynolds number
is small enough so that the flow in every duct is in a fully
developed laminar regime, with negligible junction pressure
drop losses. The minimization of global flow resistance
generates all the geometric features of the three architec-
ture: the sequence of tube diameters, the number of tribu-
taries (that optimal number is two), and the channel
lengths.

The optimized layout of ducts have three features: the
number of ports of the rim (n0), the number of pairing lev-
els (n), and the number of the ducts that are connected to
the centre (nn). Only two of these parameters are degrees
of freedom. The optimized lengths are available in tabu-
lated form in [4] asbLi ¼ Li=R ði ¼ 0; 1; . . . ; nÞ; ð28Þ
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where L0 is the length of a duct that touches the rim, and Ln

is the length of a duct that touches the centre. In addition,

ni ¼ 2�in0; _mi ¼ 2i _m0 ði ¼ 0; 1; . . . ; nÞ: ð29Þ
The number of central tubes is nn = 2�nn0, and indicates
that n, n0 and nn cannot be specified independently. The
total flow rate through the disk center is

_m ¼ nn _mn ¼ 2�nn02n _m0 ¼ n0 _m0: ð30Þ
The smallest scale D0 is

D0 ¼
V 1=2S�1=2

3

p1=4A1=4n1=2
n 2ðn�2Þ=2

; ð31Þ

determined from the constant volume constraint

V ¼ p1=2

4
D2

0nn2nA1=2
Xn

i¼0

2�i=3bLi ¼ p1=2D2
0nn2n�2A1=2S3; ð32Þ

where S3 ¼
Pn

i¼02�i=3bLi. The minimal pressure drop is

DP ¼ 128m _mR

p2nnnD4
0

Xn

i¼0

2�i=3bLi ¼
_mm2nþ3A3=2nn

p1=2V 2
S3; ð33Þ

and the pumping power required to force _m iseW ¼ p3=22nþ3nnS3
3M2: ð34Þ
3.2. Heat transfer

The heat exchanger analysis consists of repeating the
steps starting with Eq. (11). The local number of heat
transfer units Ni, the local effectiveness ei and maximum
temperature differences are as follows:

N i ¼
pkRNu2nnn

2 _mcp

bLi

2i ¼
2nnn

2Mp1=2

bLi

2i ; ð35Þ

ei ¼
1

2
1� exp � 2nnn

p1=2M

bLi

2i

 !" #
; ð36Þ

DT max;i ¼ DT max exp � 2nnn

p1=2M

Xi�1

k¼0

2�kbLk

 !
ði¼ 1;2; . . . ;nÞ;

ð37Þ
DT max;0 ¼ DT max:

The enthalpy change experienced by the warm flow in
i-channel pair is

qi ¼ 2�ðnþ1Þ _mcp

nn
DT max2i exp � 2nnn

p1=2M

Xi�1

k¼0

2�kbLk

 !

� 1� exp � 2nnn

p1=2M

bLi

2i

 !" #
ði ¼ 1; 2; . . . ; nÞ; ð38Þ

q0 ¼ 2�ðnþ1Þ _mcp

nn
DT max 1� exp � 2nnn

p1=2M
bL0

� �� �
ði ¼ 0Þ: ð39Þ

The total heat transfer rate from the hot tree to the cold
tree is
q¼ n0q0þ
Xn

i¼1

niqi

¼ _mcpDT max

2

(
1� exp � 2nnn

p1=2M
bL0

� �� �

þ
Xn

i¼1

1� exp � 2nnn

p1=2M

bLi

2i

 !" #
exp � 2nnn

p1=2M

Xi�1

k¼0

2�kbLk

 !)
¼ _mcpDT x:

ð40Þ
The global effectiveness of the tree parallel flow e is

e ¼ 2�1 1� exp � 2nnn

p1=2M
bL0

� �� �
þ S4

� 	
; ð41Þ

where

S4 ¼
Xn

i¼1

1� exp � 2nnn

p1=2M

bLi

2i

 !" #
exp � 2nnn

p1=2M

Xi�1

k¼0

2�kbLk

 !
:

ð42Þ
The longitudinal variation of DTmax,i is given by Eq. (43),
where i = n + 1 presents the temperature difference be-
tween hot and cold fluids at the outlet of the heat exchan-
ger. This can be presented in the form

DeT M
nþ1 ¼

DT max;nþ1

DT max

� �M

¼ exp � 2nnn

p1=2

Xn

i¼0

2�ibLi

 !

¼ exp � 2nnn

p1=2
S5

� �
; ð43Þ

where S5 ¼
Pn

i¼02�ibLi. Eq. (43) shows how DTmin =
DTmax,n+1 varies with n, for fixed nn and M.

The variation of the thermal effectiveness ep versus M is
similar as this one shown in Fig. 4. New and unexpected
result is the appearance of increasing returns as complexity
increases. This can significantly improve the heat exchanger
performance if the required pumping power is available.
The performance of the parallel flow heat exchanger com-
pared with the performance of counterflow heat exchanger
of the same structure, as the ratio qp/qc = ep/ec versus M

and n is similar as in Fig. 5. The new aspect of this case
is that all the curves that connect the minimal (qp/qc =
0.5) and the maximal (qp/qc = 1) ratio, are shifted to the
right and the distances between them increase with the
increase of the complexity. This means, that for the disk-
shaped dendritic heat exchanger higher mass flow rates
are needed in order to have a relative gain in the perfor-
mance of the counterflow heat exchanger.

4. Square tree parallel flow

4.1. Geometry and fluid flow

A simpler version of the dendritic heat exchangers shown
so far is the square design [4]. The new architecture has fea-
tures similar that the ones shown in Fig. 1 and [4], however
in the present configuration, the two streams flow through
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channels from the center to the square periphery. The chan-
nel layout is optimized in [4] through the minimization of
flow path lengths. The assumed number of channels that
reach the centre is moderate (nn = 8) because of the approx-
imate character of the method. One new feature is that the
channel lengths are now given by a single formula

Li ffi
2iL

½21=2ð2nþ1 � 1Þ�
ði ¼ 0; 1; . . . ; nÞ: ð44Þ

Another feature is that the only degree of freedom in
the selection of the optimized tree architecture is the num-
ber of pairing levels (n). The number of channels from one
size is ni = 2n�i+3. The total area covered by the tree is
A = L2, which means that the smallest length scale is
L0 = A1/2/[21/2(2n+1 � 1)]. The channel numbers and flow
rates are ordered as follows:

ni ¼ 2n�iþ3; nn ¼ 8; _mi ¼ 2i�nmn; _m ¼ nn _mn ¼ 23 _mn:

ð45Þ
The total tube volume is

V ¼
Xn

i¼0

ni
p
4

D2
i Li ¼

p2nþ1A1=2D2
0

½21=2ð2nþ1 � 1Þ�
Xn

i¼0

22i=3

¼ p2nþ1A1=2D2
0

½21=2ð2nþ1 � 1Þ�
S6; ð46Þ

where S6 ¼
Pn

i¼022i=3, and the smallest channel scale D0

becomes

D0 ¼
21=4ð2nþ1 � 1Þ1=2

p1=22ðnþ1Þ=2S1=2
6

V 1=2

A1=4
: ð47Þ

The minimal overall pressure drop is DP ¼ p2nþ9=2

ð2nþ1�1Þ3
_mmA3=2

V 2 S3
6,

and the pumping power required becomes

eW ¼ p32nþ9=2S3
6

ð2nþ1 � 1Þ3
M2: ð48Þ
4.2. Heat transfer

The local number of heat transfer units Ni is

Ni ¼
pkNu
2cp

Li

mi
¼ 2nþ5=2

2Mð2nþ1 � 1Þ
; ð49Þ

and the new feature is that Ni does not depend on the posi-
tion (i) of the channel pair in the tree hierarchy. The local
effectiveness ei is

ei ¼
1

2
1� exp � 2nþ5=2

Mð2nþ1 � 1Þ

" #( )
; ð50Þ

and

DT max;i ¼ DT max exp � 2nþ5=2

Mð2nþ1 � 1Þ
i

" #
ði ¼ 0; 1; . . . ; nÞ:

ð51Þ
The temperature change along the length of the each chan-
nel DT i

x is

DT i
x

DT max

¼ 2�1 1� exp � 2nþ5=2

Mð2nþ1 � 1Þ

" #( )
exp � 2nþ5=2

Mð2nþ1 � 1Þ
i

" #
ði¼ 0;1;2; . . . ;nÞ: ð52Þ

The global effectiveness of the tree parallel flow ep is

ep ¼
DT x

DT max

¼ 2�1 1� exp � 2nþ5=2

Mð2nþ1 � 1Þ

" #( )
S7; ð53Þ

where

DT x ¼
DT max

2
1� exp � 2nþ5=2

Mð2nþ1 � 1Þ

" #( )

�
Xn

i¼0

exp � 2nþ5=2

Mð2nþ1 � 1Þ
i

" #
ð54Þ

and

S7 ¼
Xn

i¼0

exp � 2nþ5=2

Mð2nþ1 � 1Þ
i

" #
: ð55Þ

At i = n + 1, Eq. (51) defines the temperature difference be-
tween hot and cold fluids at the outlet of the heat exchan-
ger. This can be presented in the form

DeT M
nþ1 ¼

DT max;nþ1

DT max

� �M

¼ exp �ðnþ 1Þ2nþ5=2

ð2nþ1 � 1Þ

" #
; ð56Þ

which shows how DTmin = DTmax,n+1 varies with n at fixed
M. The variation of the thermal effectiveness ep versus M

for the square tree structures [4] with different levels of
complexity n has a similar behavior to the curves shown
in Fig. 4. The returns diminish as the complexity increases.

5. Conclusions

In this paper we documented the heat transfer perfor-
mance of several parallel flow heat exchanger configura-
tions in which each stream bathes as a tree its allocated
space. The generation of heat exchanger architecture is dri-
ven by two objectives: maximal heat flow (q) and minimal
global pumping power ð _W Þ. These objectives compete
against each other: when the flow rate increases, q and _W
increase, and vice versa. High q’s and small _W ’s can be
achieved at the same time by making changes in the flow
architecture.

Two different constraints can be imposed: fixed mass
flow rate, or fixed pumping power. In case of fixed mass
flow rate, the impact of the complexity n on the perfor-
mance of several flow arrangements in documented in
Eqs. (26), (43) and (56). Fig. 6 shows that the effect of
complexity can be substantial. It is significant in the flow
configuration shown in Fig. 1, and negligible in the square
design [4].



Fig. 6. The effect of complexity on the outlet temperature difference of a
dendritic heat exchanger in parallel flow.
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Fig. 7 shows the effect of pumping power on effective-
ness for two different values of n. When eW is specified,
the best configuration can be selected: this is the configura-
tion with highest ep and smallest n. For eW < 10�1, any one
of the three tree-shaped structures with n = 0 can be used.
In the range, 10�1 < eW < 10, the disk-shaped [4] and the
square-shaped [4] architectures should be chosen, and for
10 < eW < 103 the square-shaped tree [4] is the best config-
uration. If more pumping power eW is available, higher lev-
els of complexity are needed in order to design a structure
with ep � 0.5.

Another interesting feature of Fig. 7 is that at lower level
of complexity (e.g., n = 0), larger differences between the
performance curves exist. As n increases, the performance
curves of different structures gradually come together.
Fig. 7. The effect of pumping power on the thermal performance of a
dendritic heat exchanger in parallel flow.
Complex flow structures are robust: they perform in nearly
the same way even though they look different.

Next, we propose a new figure of merit to evaluate ther-
mal performance of different tree-shaped architectures for a
given pumping power. In this case, the two objectives are:
minimal global thermal resistance (Rt) and minimal pump-
ing power ð _W Þ. The global thermal resistance is defined as
Rt = DTmax/q, and its dimensionless definition iseRt ¼ 1=Me: ð57Þ
Using Eqs. (9), (34), (48), (22), (41), (53) to eliminate M

and e from Eq. (57), we obtain expressions for eRt versuseW for each one of the three flow architectures considered.
Fig. 8 shows the effect of eW on eRt for the tree-shaped

structure of Fig. 1 for several complexity levels, n. Struc-
tures with higher complexity become more attractive when
more pumping power is available. If eW is specified, there is
an optimal complexity level (nopt) that delivers the lowesteRt. For example, if eW ¼ 102, nopt = 1. Another interesting
feature of Fig. 8 is the pattern of diminishing returns that
develops as n increases. From the simplest structure
(n = 0) to structures of higher complexity n, the relative
gain in performance becomes smaller. We obtained the cor-
responding curves for the other flow structures considered
[4] but, for brevity, we do not show them.

Fig. 9 summarizes the flow architectures that offers
simultaneously small values of eRt and eW for the three flow
configurations considered. The envelopes marked with
symbols were obtained from the intersection of the n-
constant curves shown in Fig. 8. The envelopes marked
with open and solid squares indicate the configurations of
Fig. 1 and in [4] respectively, and the envelopes marked
with open circles indicate the configuration shown in [4].
The numbers printed close to each symbol represent the
complexity number of branching levels for which minimal
global thermal resistance is achieved when eW is specified.
Fig. 8. The thermo-fluid performance of the tree-shaped architecture of
Fig. 1.



Fig. 9. The low-eRt and low- eW envelopes for the flow architectures, and
the performance of two streams in parallel flow.

Fig. 10. Comparison between the performance of parallel flow and
counterflow in the tree-shaped structures.
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The intersections of the three envelopes allow us to iden-
tify which type of architecture performs better for a given
pumping power. Three distinct regions are identified: (i)
for pumping power in the range 1 6 eW 6 18:5 the tree-
shaped architecture of Fig. 1 offers higher performance,
(ii) in the range 18:5 6 eW 6 6:6� 104 the architecture [4]
is recommended, and (iii) for eW > 6:6� 104 the square
tree-shaped flow configuration [4] performs better. Vertical
dashed lines separate the three eW domains.

Next, we propose to compare the maximum thermal
performance for the tree-shaped structures (the envelopes)
with the performance of classical designs. As shown in [9],
the simplest configuration is represented by two _m streams
flowing through parallel tubes of length X and diameter D.
The flow regime is assumed to be Poiseuille, and the con-
straints are the area covered (A = XD) and the volume of
tubes (V = pD2X/4). The analysis, which is omitted for
brevity, shows that there is a family (X/D) of designs the
performance of which can be evaluated in terms of eRt

and eW . Fig. 9 shows that the performance of the parallel
tubes falls well to the right of the best of the tree-shaped
configurations, meaning that two streams parallel flow
are not competitive when compared with tree-shaped
architecture.

Fig. 10 shows a comparison between the parallel flow
tree-shaped structures of Fig. 1 and [4], and the counter-
flow designs optimized in [7]. As recognized in the existing
literature [9], the counterflow performs better than the
parallel flow. Fig. 10 shows that this is also true for tree-
shaped heat exchangers. An interesting common feature
of the parallel flow and counterflow heat exchangers, is that
the tree-shaped configuration of Fig. 1 is more efficient at
low values of eW , while the configuration shown in [4]
performs better at higher levels of eW . Another common
feature of the parallel and counterflow square-shaped
architectures [4] is the fast diminishing returns in eRt as
complexity increases. On the other hand, the tree architec-
tures of Fig. 1 exhibit a more regular decay in eRt as com-
plexity increases.

The complexity (n) of each of the tree architectures
developed in this paper is an integral part of deduced geo-
metry. Complexity is optimized (deduced), not maximized.
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